Calcolare con semplicità le distanze funzionali


Fig. 1. – Calcolo della distanza X e Y tra i bordi dei fori; poiché il riferimento B è una feature con tolleranza dimensionale, su questo è stato applicato un modificatore di massimo materiale che consente un ulteriore aumento della zona di errore (shift).

Il calcolo di distanze e interassi in presenza di tolleranze geometriche di localizzazione è estremamente complicato, soprattutto se durante il collaudo è necessario tener conto di tolleranze addizionali dovute al modificatore di massimo materiale per la tolleranza (Bonus) o addirittura sul riferimento (Shift)

Le distanze funzionali tra i fori possono essere calcolati con la catena tradizionale, seguendo la metodologia esposta nel quaderno di progettazione di giugno 2011 e riportata in figura 2.

La procedura risulta particolarmente complicata poiché ad esempio è necessario calcolare lo shift minimo nella colonna della tabella in cui l’elemento di riferimento è al massimo materiale e lo shift massimo nella colonna in cui l’elemento di riferimento è al minimo materiale. Per questo motivo viene illustrata una nuova procedura semplice e immediata attraverso delle considerazioni sulle dimensioni del contorno del foro, definendo una relazione dinamica e funzionale tra la dimensione del foro soggetta a tolleranza dimensionale e la tolleranza di posizione. Supponiamo di eseguire il calcolo nella condizione di massimo materiale che, nel caso del foro da 10 mm di figura 3, corrisponde a 9,7 mm. Se si considerano tutte le posizioni assunte dal foro all’interno della zona di tolleranza di 0.8 mm, viene ottenuto un contorno interno da non violare che definisce la dimensione virtuale cioè il contorno teorico interno di accoppiamento (Inner Boundary, IB); la dimensione virtuale è una quantità costante (8,9 mm), ottenuta sottraendo la tolleranza al massimo materiale (0.8) dalla dimensione di massimo materiale (9,7).

Fig. 3. – La condizione virtuale rappresenta il contorno interno del foro da non violare (è anche la dimensione del calibro funzionale). La dimensione virtuale è una quantità costante (9,7 per il foro più piccolo e 19,4 per il foro più grande) ottenuta sottraendo la tolleranza a MMC (0,8 e 0.4) dalla dimensione di massimo materiale (rispettivamente 9,7 e 19,8 mm). E’ possibile ottenere la distanza X massima (20,85) rilevando, anche geometricamente, la distanza tra i bordi interni (Inner Boundary) dei fori.

Allo stesso modo, nelle condizioni di minimo materiale del foro (10.3, fig. 4), se si considerano tutte le posizioni assunte dal foro all’interno della zona di tolleranza di 1,4 mm, è possibile definire la condizione risultante (11,7, contorno teorico esterno, Outer Boundary, OB). La condizione risultante si ottiene addizionando la tolleranza al minimo materiale (1,4) alla dimensione di minimo materiale (10,3). Si tenga presente che per gli alberi si dovrà procedere ad un calcolo diverso.

Volendo ottenere le dimensioni dei contorni dei fori della figura 1, si otterrà:
Per il foro da 10 mm: IB1= 9,7-0,8 = 8,9 OB1= 10,3+1,4= 11,7
Per il foro da 20 mm: IB2= 19,8-0,4 = 19,4 OB2= 20,2+0,8 = 21
La distanza X sarà ottenuta sottraendo dall’interasse teorico i due contorni limiti teorici (in termini radiali) e quindi sarà uguale a:
Xmax = 35- (IB1 + IB2 )/2 = 35-14.5 = 20.85 (figura 3)
Xmin = 35- (OB1 + OB2 )/2 = 35-16.35 = 18.65 (figura 4)
Lasciamo al lettore il calcolo della distanza Y massima e minima (uguale a 61,1 e 58,3).

Fig. 4. – La condizione risultante (contorno teorico esterno dei fori) si ottiene addizionando la tolleranza al minimo materiale (1,4 per il foro più piccolo e 0,8 per il foro più grande) alla dimensione di minimo materiale (rispettivamente 10,3 e 20,2 mm). E’ possibile ottenere la distanza X minima (18,65) rilevando, anche geometricamente, la distanza tra gli inviluppi esterni (Outer Boundary) dei fori.

 

 

 

 

Design thinking

Riduzione dell’impatto ambientale come specifica della progettazione

L’adozione di tecniche e criteri di progettazione “green” per la riduzione dell’impatto ambientale non rappresenta solo un dovere etico o un obbligo normativo, ma anche una concreta opportunità di innovazione e di differenziazione competitiva per le aziende. di Giorgio De

Design thinking

Figure 02: l’integrazione di robot umanoidi nella produzione automobilistica

Analisi tecnica dell’impiego del robot Figure 02 nel contesto della iFACTORY BMW. di Lisa Borreani BMW ha avviato una collaborazione strategica con la startup californiana Figure AI per testare l’integrazione operativa di un robot umanoide all’interno di uno stabilimento automobilistico. Il

Metodologie di progettazione

Progettazione strutturale di telai per macchine automatiche

Nel campo dell’automazione industriale, la struttura portante delle macchine riveste un ruolo cruciale per l’intero sistema. Telai, basamenti e strutture di supporto devono garantire rigidezza, stabilità e compatibilità con componenti mobili e attuatori, senza introdurre vibrazioni indesiderate o cedimenti in

Additive manufacturing

Maddie, il primo AI Agent italiano per la manifattura additiva

Maddie è il primo AI Agent sviluppato per semplificare l’accesso alla manifattura additiva e accelerarne l’adozione nel tessuto produttivo italiano, ed è stata la protagonista dell’evento MadeInAdd: Shaping the present of Additive Manufacturing, in cui sono state illustrate non solo