Onde acustiche e raggi laser per l’analisi delle proprietà meccaniche di singole cellule

Le analisi biomediche su cellule singole hanno già dimostrato di avere ampie potenzialità in diversi settori della ricerca biomedica, quali lo studio di cellule rare, la messa a punto di terapie antitumorali, e lo sviluppo di sistemi diagnostici ad elevata precisione. Da oggi esiste una possibilità in più, come riportato nello studio realizzato da un gruppo di ricercatori, in larga parte dell’Istituto di fotonica e nanotecnologia del Cnr di Milano, dell’Istituto di genetica molecolare del Cnr di Pavia e dell’Università di Pavia.

Lo studio è stato pubblicato dalla rivista Scientific Reports, del Nature Publishing Group.

Nell’ultimo decennio la realizzazione di strumenti in grado di manipolare in modo non invasivo singole cellule, o addirittura singole molecole, ha aperto nuovi orizzonti di ricerca. Uno strumento particolarmente utile a questo scopo è dato dalle così dette “pinze ottiche”, che permettono di intrappolare e manipolare particelle micrometriche senza alcun contatto fisico con la particella stessa, semplicemente sfruttando le forze esercitate da una radiazione laser. A seguito dei primi studi sui sistemi di pinze ottiche l’attività dei ricercatori Italiani (attivi nel settore dal 2007) si è concentrata inizialmente sulla possibilità di integrare questa tecnologia con quella dei sistemi microfluidici, circuiti di microcanali in cui le cellule posso essere fatte fluire in modo controllato. Questo ha permesso di realizzare il primo sistema integrato per l’intrappolamento e l’analisi delle proprietà elastiche di singole cellule che sono un marker della presenza di patologie tumorali. Grazie alla messa a punto di diversi processi tecnologici ed alla ottimizzazione delle strutture si è infine arrivati ad integrare nello stesso dispositivo non solo l’utilizzo di forze ottiche ma anche la presenza di onde acustiche che forniscono un ulteriore strumento di analisi delle cellule.

“Il principale risultato dell’articolo appena pubblicato – spiega Paolo Minzioni del Laboratorio di Fotonica integrata dell’Università di Pavia – è che abbiamo messo a punto e dimostrato la possibilità di integrare in dispositivi microfluidici sia l’utilizzo di forze ottiche che l’utilizzo di forze acustiche. Una delle ricadute, che mostriamo nell’articolo, è la possibilità di analizzare campioni biologici a livello di singola cellula, effettuando un’accurata analisi di due diversi parametri riaguardanti la meccanica cellulare che danno indicazioni sulla capacità delle cellule di cambiare forma e di variare il proprio volume. Per di più, se necessario, siamo anche in grado di selezionare e raccogliere le cellule analizzate per ulteriori valutazioni biologiche.
Allo stato dell’arte, questo è un significativo passo in avanti rispetto a quanto mostrato in passato, ma soprattutto questo rilancia la possibilità di integrare ancora maggiori funzionalità in dispositivi microfluidici. Per noi il prossimo passo sarà quello di rendere il sistema che abbiamo realizzato ancora più compatto e semplice da utilizzare, per poi integrare al suo interno ulteriori funzionalità, quali ad esempio quelle legate a sistemi di microscopia integrata o alla manipolazione dei campioni tramite campi elettrici. Le prospettive insomma sono quelle di un campo ancora in fortissima espansione, e le ricadute potenziali sono enormi sia in campo diagnostico che nell’ambito dello sviluppo di farmaci, o nella ricerca biologica di base.”

L’attività è stata svolta grazie alle possibilità di collaborazione offerte dalla azione COST “MP1205”, finanziata dalla Comunità Europea, e come seguito della collaborazione (tra il Laboratorio di Fotonica integrata dell’Università di Pavia, l’Istituto di Fotonica e nanotecnologia del Cnr di Milano e l’Istituto di genetica molecolare del Cnr di Pavia) creatasi per il progetto “Optofluidic chips for the study of cancer cell mechanical properties and invasive capacities” finanziato dalla Fondazione Cariplo nel 2011.

Design thinking

La nuova era dell’aerodinamica: la Bugatti Tourbillon

Un’analisi tecnica approfondita dell’evoluzione aerodinamica e delle innovazioni ingegneristiche nella progettazione della Bugatti Tourbillon. di Carla Devecchi L’aerodinamica gioca un ruolo fondamentale nel settore automobilistico, influenzando direttamente l’efficienza energetica, le prestazioni e la sicurezza dei veicoli. Un design aerodinamico ottimizzato

Design thinking

Il motore Raptor: la rivoluzione di SpaceX nell’ingegneria dei razzi

Il motore Raptor di SpaceX che sta trasformando la propulsione spaziale, aprendo nuove possibilità per missioni interplanetarie e modificando l’accesso allo spazio. di Fiorenzo Borreani L’esplorazione spaziale ha sempre spinto l’ingegneria al limite, richiedendo innovazioni continue per superare le sfide

Software

Introduzione ai Drop Test

Le simulazioni di drop test rappresentano una tecnica avanzata nell’ingegneria strutturale per valutare la resistenza di materiali e componenti sottoposti a impatti. Queste simulazioni, basate su metodi numerici come l’analisi agli elementi finiti, consentono di prevedere il comportamento strutturale e