Nanoarchitetture neurali artificiali che imitano il cervello umano

nanoarchitetture neurali
Pubblicato uno studio su Nature Materials che esplora la possibilità di imitare l'apprendimento del cervello grazie a nanoarchitetture neurali artificiali.

Due team dei politecnici di Milano e di Torino hanno pubblicato uno studio su Nature Materials che esplora la possibilità di imitare l’apprendimento del cervello umano grazie a nanoarchitetture neurali artificiali.

Negli ultimi anni, sempre più scienziati di diverse discipline che vanno dalla Biologia alla Fisica, dalla Matematica all’Ingegneria, stanno unendo le proprie forze per affrontare la madre di tutte le sfide scientifiche: la comprensione della mente umana.

Questo sforzo conoscitivo senza precedenti è alla base del boom dell’Intelligenza Artificiale, grazie alla quale supercomputer di IBM e Google hanno battuto campioni di giochi di strategia (scacchi, Jeopardy, Go), e grazie alla quale i nostri computer e telefoni sono dotati di software sempre più intelligenti, in grado di imparare dalle nostre esperienze. Nonostante questi incredibili progressi, la capacità del cervello umano di processare informazioni spazio-temporali in parallelo e a bassissimo consumo rimane inarrivabile per gli attuali approcci computazionali (il consumo del supercomputer Watson di IBM è circa un milione di volte maggiore di quello del nostro cervello).

Un approccio hardware al cervello umano

Un team del Politecnico di Torino coordinato da Carlo Ricciardi – docente del Dipartimento di Scienze Applicate e Tecnologia-DISAT – insieme a Daniele Ielmini del Politecnico di Milano e a Gianluca Milano dell’Istituto Nazionale di Ricerca Metrologica-INRiM in un recente studio pubblicato sulla prestigiosa rivista Nature Materials propongono un approccio hardware, partendo dall’evidenza che anche le più complesse funzioni del cervello, come memoria e apprendimento sono espressione di un comportamento collettivo di connessioni (sinapsi) e unità di processo (neuroni) che hanno una natura fisica e materiale. I dispositivi messi a punto da Ricciardi, Ielmini e Milano si basano su reti di nanofili (nanowires) memresistivi, cioè architetture su scala nanometrica (la stessa delle sinapsi biologiche) che mostrano le tipiche funzioni neurali come adattabilità, plasticità e correlazione spaziotemporale.

Due architetture memresistive

In particolare, nell’articolo appena pubblicato su Nature Materials viene proposto un sistema composto da due architetture, entrambe memresistive: la rete di nanofili reagisce agli input, producendo un output spazio-temporale a dimensionalità ridotta e transitorio, il quale viene poi processato da una matrice di RAM resistive non volatili, grazie alle quali si possono implementare funzioni di classificazione e inferenza usando le semplici leggi di Ohm e Kirchoff (physical in-memory computing). Poiché la maggior parte del consumo energetico nei sistemi basati su Intelligenza Artificiale è relativa all’addestramento (training) della rete (come capita anche per le reti neurali biologiche), questa compressione dei parametri operata dalla rete di nanofili comporta una notevole diminuzione del consumo complessivo. Nella prospettiva di sfruttare industrialmente tali potenzialità, i tre gruppi hanno già depositato un brevetto congiunto.

Implementare in materia i processi cognitivi

“Abbiamo mostrato che è possibile implementare ‘in materia’ – spiega Carlo Ricciardila dinamica dei processi cognitivi che da un lato sfruttano la memoria operativa a breve termine per richiamare e confrontare immagini, idee e simboli, mentre dall’altro classificano i risultati in variazioni strutturali delle nostre connessioni (memoria a lungo termine). Inoltre, tali dispositivi possono implementare paradigmi computazionali che necessitano di un addestramento limitato come il reservoir computing, aprendo la strada non solo a computer sempre più intelligenti e a basso consumo, ma anche a protesi neurali impiantabili, che un domani potrebbero consentire il recupero o il contenimento di funzioni neurali in regressione.”

Design thinking

Riduzione dell’impatto ambientale come specifica della progettazione

L’adozione di tecniche e criteri di progettazione “green” per la riduzione dell’impatto ambientale non rappresenta solo un dovere etico o un obbligo normativo, ma anche una concreta opportunità di innovazione e di differenziazione competitiva per le aziende. di Giorgio De

Design thinking

Figure 02: l’integrazione di robot umanoidi nella produzione automobilistica

Analisi tecnica dell’impiego del robot Figure 02 nel contesto della iFACTORY BMW. di Lisa Borreani BMW ha avviato una collaborazione strategica con la startup californiana Figure AI per testare l’integrazione operativa di un robot umanoide all’interno di uno stabilimento automobilistico. Il

Metodologie di progettazione

Progettazione strutturale di telai per macchine automatiche

Nel campo dell’automazione industriale, la struttura portante delle macchine riveste un ruolo cruciale per l’intero sistema. Telai, basamenti e strutture di supporto devono garantire rigidezza, stabilità e compatibilità con componenti mobili e attuatori, senza introdurre vibrazioni indesiderate o cedimenti in