Intelligenza Artificiale: uno strumento che ‘crea’ o che ‘assiste’?

Nell’industria, la corsa all’innovazione tecnologica continua senza sosta. Negli ultimi tempi, la tecnologia su cui sono puntati i riflettori è l’Intelligenza Artificiale (AI) generativa, che promette di far compiere a chi la utilizza correttamente un salto decisivo per migliorare i propri processi, prodotti, servizi. Alla luce di ciò, chi progetta oggi può utilizzare con un sufficiente grado di sicurezza il design generativo integrato con l’AI? E, soprattutto, è possibile garantire una collaborazione di successo tra macchine e umani.

di Paolo Delnevo, Vice President PTC Southern Europe

In qualità di responsabile di un’azienda leader nel settore del software industriale, mi trovo spesso ad affrontare il seguente tema: in che modo possiamo efficacemente integrare l’Intelligenza Artificiale nei nostri processi? E, allo stesso tempo, quale ruolo dovrebbe giocare questa tecnologia per garantire che i nostri strumenti, le nostre soluzioni supportino concretamente i clienti nella crescita del loro business?


In altre parole, l’AI generativa che ruolo svolge: ‘creativo’ o di ‘assistenza’?
Oggi la tendenza è di considerare il design generativo come uno strumento metodologico di supporto, capace di assistere l’uomo in determinati compiti. Ad esempio, un ingegnere che intende apportare un miglioramento al prodotto chiedendo supporto all’AI mediante uno specifico prompt, riceverà da essa idee, suggerimenti o indicazioni su come implementarlo. Si badi, tuttavia, che tra le possibili domande che possono essere poste all’AI vi è anche la seguente: “Come posso migliorare il prodotto in ottica di sostenibilità?”. A quel punto, sempre che lo strumento sia in grado di fornire informazioni ‘spiegabili’, quindi affidabili, sarà lo strumento a proporre cosa fare: l’ingegnere dovrà quindi limitarsi a mettere in pratica le indicazioni ricevute. La conclusione, dunque, è che tutto è possibile: ma cosa è concepibile e, soprattutto, auspicabile?


A mio parere, l’obiettivo oggi è quello di riuscire a sfruttare questa fantastica risorsa per risparmiare tempo e aumentare l’impatto delle proprie attività. Si tratta quindi di alimentare opportunamente l’AI, in questo caso la propria specifica AI, e utilizzare la tecnologia generativa per individuare che cosa possa essere passibile di miglioramento: in merito alle attività da svolgere, al mercato, ai clienti, ai fornitori ecc.
Il design generativo non è di certo una novità. Nell’industria automobilistica, la metodologia generativa viene impiegata, ad esempio, per ottimizzare parti e componenti del veicolo al fine di ridurne il peso o migliorarne la resistenza. Maggiore è il numero degli scenari considerati e il numero di parametri presi in esame, maggiori sono le possibilità di sviluppare un prodotto di successo. In questo specifico contesto, l’AI è senza dubbio in grado di sfidare (e probabilmente battere) l’uomo nel trovare le migliori soluzioni. Eppure, è sempre difficile dire se l’AI assista o crei.


Approcciare il design di un prodotto utilizzando la tecnica generativa con il supporto dell’AI è infatti da considerarsi una collaborazione uomo-macchina, un dialogo che si instaura tra due parti e il cui fine è quello di creare componenti che, ad esempio, siano più leggere, resistenti, ecologiche. È proprio il dialogo a costituire la parte interessante della questione ed è sempre il dialogo che gli ingegneri e, in generale, gli operatori di sistema devono essere in grado di instaurare correttamente quando utilizzano le nostre soluzioni software. Per questo motivo, credo che sia sbagliato dualizzare il dibattito sull’AI quale strumento che ‘crea’ o ‘assiste’: il nocciolo della questione è infatti il modo in cui si è in grado di organizzare la conversazione con l’AI per raggiungere i propri obiettivi.
La rivoluzione dell’AI generativa potrà attuarsi solo se le aziende inizieranno a guardare ai propri dati e alla loro disponibilità con la necessaria attenzione. Affinché l’AI sia veramente efficace è infatti necessario alimentarla opportunamente, non solo con i dati appropriati, ma anche con i propri metodi di lavoro. La qualità dei risultati generativi è infatti proporzionale alla qualità dei dati utilizzati per addestrare i modelli. Solo così l’AI potrà dirsi affidabile, indipendentemente che si decida di definirla uno strumento creativo o di assistenza.

Design thinking

Da esclusiva ad inclusiva: la progettazione cambia punto di vista

Lanciare sul mercato un prodotto esclusivo è generalmente percepito in modo positivo dalla società contemporanea. Anche in ambito progettuale è prassi comune definire nelle fasi preliminari di progetto una popolazione target ristretta e quindi requisiti altamente specifici. Tale approccio non

Materiali

Materiali metamorfici: la rivoluzione dei materiali flessibili e resistenti

I ricercatori del MIT hanno presentato una scoperta straordinaria, sviluppando materiali metamorfici che riescono a combinare due proprietà spesso considerate incompatibili: resistenza e flessibilità. di Sara Bagherifard Tradizionalmente, i materiali più robusti e resistenti, come metalli e ceramiche, risultano difficili

osservatorio mecspe
Attualità

Osservatorio MECSPE: gli imprenditori credono nell’AI

L’Osservatorio MECSPE sull’industria manifatturiera relativo al I quadrimestre 2025 realizzato da Senaf restituisce uno spaccato di un settore in transizione: solido nella visione strategica, più cauto sul fronte della crescita e in cerca di strumenti concreti per affrontare le prossime

Metodologie di progettazione

Progettazione dinamica di rotori e organi rotanti

I sistemi meccanici che producono o trasmettono energia in movimento si affidano quasi sempre a sistemi di componenti rotanti. Rotori, alberi, giunti e cuscinetti non sono soltanto elementi funzionali ma rappresentano i componenti fondamentali per la dinamica di gran parte