Il diamante per le reti quantistiche del futuro

Il diamante per le reti quantistiche del futuro
Il diamante per le reti quantistiche: CNR e l’Università di Ulm hanno individuato un metodo per impiantare qubit all’interno di circuiti fotonici.

Il diamante per le reti quantistiche del futuro: uno studio dell’Istituto di fotonica e nanotecnologie del Cnr e dell’Università di Ulm, pubblicato su ACS Photonicsha individuato un nuovo metodo per impiantare qubit all’interno di circuiti fotonici, aprendo, così, la strada ai sistemi di calcolo quantistico in diamante

Le reti quantistiche si basano su sistemi connessi l’uno all’altro per il trasferimento di informazioni, sfruttando proprietà quanto-meccaniche come l’entanglement e la sovrapposizione di stati.

La capacità di modificare la luce a livello di singolo fotone in un dispositivo integrato è un requisito fondamentale per sviluppare la nuova generazione di reti quantistiche: questo consentirà di realizzare computer avanzati per risolvere sempre più rapidamente alcuni problemi complessi, ma anche di utilizzare canali di comunicazione sicuri per trasferire informazioni criptate.

Il diamante per le reti quantistiche del futuro

Circuiti fotonici realizzati con il diamante

Oggi, grazie ad una collaborazione tra i gruppi di ricerca guidati da Shane Eaton dell’Istituto di fotonica e nanotecnologie del Consiglio nazionale delle ricerche (Cnr-Ifn) di Milano e da Alexander Kubanek dell’Università di Ulm, è stato sviluppato un metodo di fabbricazione innovativo ed ibrido per realizzare circuiti fotonici utilizzando il diamante: un passo essenziale per sviluppare bit quantistici (qubit), l’elemento base dell’informazione quantistica.

Il diamante per le reti quantistiche del futuro

Nel diamante sono presenti, e possono essere opportunamente ingegnerizzati, dei difetti reticolari in grado di essere utilizzati come qubit”, spiega Shane Eaton ricercatore del Cnr-Ifn. “Si tratta dei centri di colore, posizioni reticolari dove è presente un’impurezza e manca un atomo di carbonio, e nei quali è possibile codificare, controllare e manipolare l’informazione quantistica sotto forma di qubit. Tale particolare morfologia -e la presenza di questi difetti – rende il diamante un candidato promettente per le tecnologie quantistiche”.

Il team italiano, insieme a colleghi dell’Università di Ulm, ha dimostrato che è possibile collocare con precisione qubit basati su centri silicio-vacanza all’interno di circuiti fotonici formati mediante laser in diamante.

“Tali risultati nascono dalla prima dimostrazione (Eaton, Nature Scientific Reports, 2016) che i laser a femtosecondi – ossia laser che emettono impulsi brevissimi e ravvicinati, essendo un femtosecondo un milionesimo di miliardesimo di secondo- possono creare nel diamante connessioni fotoniche, che sono i mattoncini fondamentali necessari per il calcolo quantistico”, spiega Eaton.

“Un altro ingrediente fondamentale è, poi, quello di realizzare qubit: con questa nuova tecnica abbiamo sviluppato un chip integrato in diamante, in grado di ingegnerizzare la luce a livello di singolo fotone. Il prossimo passo sarà fabbricare un circuito fotonico tridimensionale per rendere possibili sistemi per il calcolo quantistico di prossima generazione in diamante, tali da consentire l’elaborazione di una quantità notevole di dati contemporaneamente, con estrema velocità”, precisa il ricercatore.

L’importanza di queste tematiche, sia a livello fondamentale che tecnologico, è stata recentemente comprovata anche dall’assegnazione del Premio Nobel per la Fisica 2022 conferito ad Alain Aspect, John Clauser e Anton Zeilinger: questi risultati assumono, pertanto, grande rilevanza per il futuro sviluppo di tecnologie quantistiche all’avanguardia.

Senza categoria

Il motore Raptor: la rivoluzione di SpaceX nell’ingegneria dei razzi

Il motore Raptor di SpaceX che sta trasformando la propulsione spaziale, aprendo nuove possibilità per missioni interplanetarie e modificando l’accesso allo spazio. di Fiorenzo Borreani L’esplorazione spaziale ha sempre spinto l’ingegneria al limite, richiedendo innovazioni continue per superare le sfide

Software

Introduzione ai Drop Test

Le simulazioni di drop test rappresentano una tecnica avanzata nell’ingegneria strutturale per valutare la resistenza di materiali e componenti sottoposti a impatti. Queste simulazioni, basate su metodi numerici come l’analisi agli elementi finiti, consentono di prevedere il comportamento strutturale e

Design thinking

Combattere il caldo con pareti a zig zag a raffrescamento radiativo

Raffreddamento passivo: il successo delle pareti corrugate della Columbia University. di Lisa Borreani Gli edifici rappresentano circa il 40% del consumo energetico globale e contribuiscono al 36% delle emissioni di CO2. Il raffreddamento degli ambienti interni costituisce circa il 20%