Politecnico di Milano e Università di Rostock scoprono una nuova tipologia di materiali

Rostock
Politecnico di Milano e Università di Rostock scoprono una nuova tipologia di materiali. Lo studio è stato pubblicato sulla rivista scientifica Nature.

Aperta la strada a una nuova tipologia di materiali: un team di ricercatori del Politecnico di Milano e dell’Università di Rostock (Germania) ha scoperto ed osservato in laboratorio un nuovo tipo di transizione di fase in un bizzarro quasi-cristallo fatto di luce laser.

Un team di ricercatori del Politecnico di Milano e dell’Università di Rostock (Germania) ha scoperto ed osservato in laboratorio un nuovo tipo di transizione di fase in un bizzarro quasi-cristallo fatto di luce laser. La scoperta è stata recentemente pubblicata sulla rivista Nature e potrebbe aprire la strada ad una comprensione olistica del funzionamento interno di materiali complessi o artificiali ed al loro utilizzo in applicazioni avanzate basate su materiali a controllo di fase.

La scoperta di questa nuova transizione di fase nei quasi-cristalli, oltre a rappresentare una svolta nella comprensione di alcuni fenomeni fondamentali della materia quantistica, potrà aprire in futuro la strada allo sviluppo e alla tecnologia di una nuova tipologia di materiali, finora del tutto sconosciuti, in cui potremo controllare e modificare simultaneamente e a piacimento le loro proprietà: una nuova forma di materia molto più flessibile e controllabile di quella che conosciamo ora”. Afferma Stefano Longhi del Dipartimento di Fisica del Politecnico di Milano.

Un esempio familiare della transizione

Un esempio molto familiare di transizione di fase è quello osservato nelle giornate invernali: piccole deviazioni dalla temperatura di 0°C determinano se l’acqua esiste nella sua forma liquida o come ghiaccio solido e neve.  La materia mostra anche transizioni meno percettibili, e quindi meno familiari, fra stati (o fasi) che possono essere però altrettanto fondamentali per il funzionamento di molti dispositivi usati comunemente, dai chip dei computer ai nostri telefonini, per esempio la capacità o meno di un materiale di condurre elettricità, oppure di scambiare energia o particelle con l’ambiente circostante.

Il lavoro dei fisici di Milano e Rostock

Con tecnologie ottiche all’avanguardia, il team di fisici sperimentali ha recentemente realizzato un quasi-cristallo di luce (i quasi–cristalli sono strutture non perfettamente ordinate, come i cristalli, ma non completamente disordinate e sono tra le strutture più rare in natura) e dimostrato che proprietà apparentemente indipendenti in questo bizzarro materiale sono in realtà intimamente legate e possono subire congiuntamente un cambiamento improvviso.

Per studiare le caratteristiche di questi affascinanti materiali è stato emulato in laboratorio un quasi-cristallo con della luce laser che si propaga in modo intrecciato in fibre ottiche lunghe chilometri. La complessa dinamica della luce in queste fibre rispecchia fedelmente il movimento quantistico degli elettroni nel quasi-cristallo.

Durante lo studio della propagazione della luce in questi sistemi, è stata scoperta una tripla transizione di fase, in cui le proprietà topologiche, la conduttività e lo scambio di energia tra il quasi cristallo e l’ambiente circostante cambiano bruscamente, ma in modo simultaneo.

Design thinking

Il motore Raptor: la rivoluzione di SpaceX nell’ingegneria dei razzi

Il motore Raptor di SpaceX che sta trasformando la propulsione spaziale, aprendo nuove possibilità per missioni interplanetarie e modificando l’accesso allo spazio. di Fiorenzo Borreani L’esplorazione spaziale ha sempre spinto l’ingegneria al limite, richiedendo innovazioni continue per superare le sfide

Software

Introduzione ai Drop Test

Le simulazioni di drop test rappresentano una tecnica avanzata nell’ingegneria strutturale per valutare la resistenza di materiali e componenti sottoposti a impatti. Queste simulazioni, basate su metodi numerici come l’analisi agli elementi finiti, consentono di prevedere il comportamento strutturale e

Design thinking

Combattere il caldo con pareti a zig zag a raffrescamento radiativo

Raffreddamento passivo: il successo delle pareti corrugate della Columbia University. di Lisa Borreani Gli edifici rappresentano circa il 40% del consumo energetico globale e contribuiscono al 36% delle emissioni di CO2. Il raffreddamento degli ambienti interni costituisce circa il 20%