Stampare in resina con tecnologia SLA e DLP, come progettare meglio

La prima tecnologia Additive ad essere nata negli anni ’80 è la stereolitografia (SLA). Questa tecnologia rimane una delle più interessanti specialmente per la produzione di parti molto dettagliate e con un’alta necessità di accuratezza. Il processo si basa sulla capacità del materiale di solidificare all’esposizione di una radiazione luminosa, quindi i materiali utilizzati sono resine fotoindurenti. Le stampanti che utilizzano questa tecnologia sono diventate anche economiche, quindi risultano essere largamente accessibili. Sono presenti diversi esempi di aziende che utilizzano tale tecnologia per produzione, oltre che per la prototipazione, di parti complesse e personalizzate.

La tecnologia SLA si basa su un fascio laser che solidifica selettivamente la resina fotopolimerizzante contenuta in una vasca. Un’altra tecnologia Additive che si basa su un processo molto simile è il “Digital Light Processing” (DLP). In questa tecnologia un display utilizza la luce UV per solidificare la resina dove necessario. Entrambe le tecnologie vantano una grande precisione e accuratezza nei dettagli. È interessante conoscere le loro specificità, sia per la prototipazione che per la produzione, per progettare parti adatte a questo tipo di tecnologie.

Grafica riassuntiva dei principali consigli per la progettazione per SLA [Liberamente modificata dalla grafica articolo dfAM SLS. Sicuramente da rivedere graficamente.]
Come spesso accade per la progettazione di parti da stampare con tecnologia Additive uno dei punti chiave per ottenere un buon risultato è l’orientamento della parte durante la stampa. Il problema principale con queste tecnologie è la sezione trasversale lungo l’asse Z. Una sezione trasversale grande aumenta il rischio del distacco della parte dal piano di stampa. Spesso è quindi opportuno orientare la parte angolata rispetto al piano di stampa, piuttosto che orizzontale, anche se questo aumenta i tempi di produzione e la quantità di supporti necessari. Un’altra possibilità per ridurre il rischio di distacco dal piano di stampa è quella di ridurre l’area trasversale della parte in fase di progettazione, ad esempio svuotando l’interno. Quando si progettano cavità bisogna prevedere fori di scolo per permettere la fuoriuscita della resina non solidificata. In fase di orientamento del pezzo è anche importante evitare di supportare superfici che richiedono una buona finitura superficiale in quanto la rimozione dei supporti potrebbe lasciare irregolarità sulla superficie.

La risoluzione ottenuta con questa tecnologia è solitamente migliore rispetto alle altre tecnologie Additive. I layer hanno un’altezza di circa 20-40 µm e la risoluzione può essere anche inferiore ai 50 µm. È possibile stampare pareti sottili di circa 0,5 mm, ma è sempre meglio collegare almeno due lati di tali pareti a parti più massive per evitare il distaccamento. Si possono stampare parti mobili già assemblate lasciando almeno 0,5 mm tra di esse. Per quanto riguarda le strutture a sbalzo, ovvero non supportate, è meglio limitarne le dimensioni a qualche millimetro per evitare deformazioni o distaccamenti.

Questa tecnologia permette di ottenere una grande accuratezza e un alto livello di dettaglio, ma è necessario evitare problemi legati a rotture o distaccamenti. Per questo risulta fondamentale conoscere quali sono i limiti e i vincoli di tale tecnologia. Questi accorgimenti permettono di definire rapidamente una geometria e un orientamento ottimale per la stampa. Le capacità eccezionali di questa tecnologia offrono spesso l’unica soluzione per produrre velocemente parti complesse e personalizzate.

VISITA LE NOSTRE LIBRARY E SCARICA I WHITE PAPER GRATUITI SUL TEMA DELL’ADDITIVE MANUFACTURING

Additive Manufacturing

White Paper | Stampa 3D e prototipazione

Metodologie di progettazione

Progettazione strutturale di telai per macchine automatiche

Nel campo dell’automazione industriale, la struttura portante delle macchine riveste un ruolo cruciale per l’intero sistema. Telai, basamenti e strutture di supporto devono garantire rigidezza, stabilità e compatibilità con componenti mobili e attuatori, senza introdurre vibrazioni indesiderate o cedimenti in

Additive manufacturing

Maddie, il primo AI Agent italiano per la manifattura additiva

Maddie è il primo AI Agent sviluppato per semplificare l’accesso alla manifattura additiva e accelerarne l’adozione nel tessuto produttivo italiano, ed è stata la protagonista dell’evento MadeInAdd: Shaping the present of Additive Manufacturing, in cui sono state illustrate non solo

mecspe bari
Attualità

MECSPE Bari | L’innovazione manifatturiera del Centro-Sud

Dal 27 al 29 novembre 2025, imprese, istituzioni e università si incontreranno alla fiera MECSPE Bari per sviluppare nuove strategie, per la promozione di nuove competenze e l’implementazione di innovazioni avanzate, per costruire un ecosistema manifatturiero ancora più efficiente e

Additive manufacturing

Un modo più sostenibile per stampare in 3D oggetti più resistenti

M. Perroni-Scharf et al., 2025. SustainaPrint: Making the Most of Eco-Friendly Filaments. The 38th Annual ACM Symposium on User Interface Software and Technology (UIST ’25), 2025. Nel corso degli ultimi decenni, la produzione additiva ha suscitato grande entusiasmo, rivoluzionando la