L’instabilità meccanica per costruire micro e nanostrutture 3D ispirate da Origami

Origami, l’antica arte giapponese di piegatura che trasforma fogli di carta in sculture 3D, è un argomento di attuale interesse scientifico grazie al suo promettente potenziale in una vasta gamma di applicazioni. La ricerca qui presentata introduce una strategia basata su origami che sfrutta la deformazione meccanica per realizzare micro e nanostrutture 3D con forme pieghevoli fatte da diverse classi di materiali, dai morbidi polimeri ai fragili semiconduttori inorganici. Questo approccio utilizza una combinazione di idee ispirate da origami, metodi di modellazione numerica e tecniche sperimentali.

La Figura 1 mostra il concetto generale del processo di trasformazione del sistema 2D in una nano o microstruttura 3D. I precursori 2D (nastri rettilinei) vengono incollati parzialmente (zone evidenziate in rosso) su un substrato elastomerico pre-deformato. Le forze di compressione associate al rilassamento del substrato inducono la trasformazione della struttura da bidimensionale a tridimensionale. La variazione spaziale di spessore delle strutture 2D guida le deformazioni e le pieghe nelle zone specifiche durante il processo di deformazione a compressione. Queste caratteristiche permettono la trasformazione di qualsiasi tipo di microsistema 2D in una configurazione 3D a livello di millimetri o nanometri, fornendo in tal modo eccezionali opzioni di design per lo sviluppo di nuove forme di dispositivi. Il carattere elastico delle deformazioni associate a questo metodo permette il controllo continuo e reversibile delle configurazioni negli stati intermedi di trasformazione da 2D a 3D.

Sono state ottenute una ampia varietà di micro e nanostrutture 3D formate attraverso piegature unidirezionali, bidirezionali o gerarchiche, con esempi che vanno da colonne cilindriche e squame, alle scatole cubiche, piramidi, stelle di mare, ventagli, palle di calcio, automobili, case ed edifici con più piani. In combinazione con processi avanzati di microfabbricazione, tale concetto di design, può fornire l’accesso immediato a micro architetture 3D di varie topologie con livelli di complessità geometrica superiori a quelli riportati in precedenza. Per esempio, questa metodologia può essere importante in componenti elettromagnetici 3D, come induttori o antenne, dove le proprietà chiave come i fattori di qualità, le frequenze di risonanza e la direzionalità possono essere regolate in tempo reale. Altri applicazioni di questo approccio possono essere tecnologie avanzate di microsistemi in elettronica, fotonica, sensori, e i sistemi micro-elettromeccanici.

Software

I guardrail dell’AI

I guardrail dell’AI aiutano a garantire che gli strumenti di AI di un’azienda (e il loro utilizzo nel business) riflettano gli standard, le politiche e i valori dell’organizzazione stessa. di Andrea Bondi Tutti quanti abbiamo presente cosa siano i guardrail

Design thinking

La nuova era dell’aerodinamica: la Bugatti Tourbillon

Un’analisi tecnica approfondita dell’evoluzione aerodinamica e delle innovazioni ingegneristiche nella progettazione della Bugatti Tourbillon. di Carla Devecchi L’aerodinamica gioca un ruolo fondamentale nel settore automobilistico, influenzando direttamente l’efficienza energetica, le prestazioni e la sicurezza dei veicoli. Un design aerodinamico ottimizzato

Design thinking

Il motore Raptor: la rivoluzione di SpaceX nell’ingegneria dei razzi

Il motore Raptor di SpaceX che sta trasformando la propulsione spaziale, aprendo nuove possibilità per missioni interplanetarie e modificando l’accesso allo spazio. di Fiorenzo Borreani L’esplorazione spaziale ha sempre spinto l’ingegneria al limite, richiedendo innovazioni continue per superare le sfide