Ali a nido d’ape

Figura1
I profili più curvi hanno velocità di stallo più basse ma resistenza più elevata; alle velocità elevate i profili meno curvi sono più performanti

Le strutture a celle, come quelle delle strutture a nido d’ape (honeycomb), sono sempre più utilizzate nell’ingegneria, specialmente in quelle applicazioni che richiedono riduzioni di peso e rumore (ad esempio nei motori aeronautici o nei pannelli fonoassorbenti). Le celle, solitamente di forma esagonale, vengono progettate principalmente per fornire rigidezza. Tuttavia, utilizzando opportuni accorgimenti, le celle possono diventare utilizzabili come meccanismi, ovvero per fornire caratteristiche di elasticità e deformabilità.

Oggi, per garantire agli aeromobili buone caratteristiche di volo e di autonomia sia a bassa che alta velocità, i profili alari vengono già modificati anche in modo molto visibile da superfici mobili quali flap e slat (Figura 1).

L’interesse della ricerca in campo aeronautico si sta però spostando verso la realizzazione di profili modificabili con continuità e che richiedano quindi un numero inferiore di parti mobili e attuatori.

Figura2
Figura 2 – Morfologia di un’ala con struttura a nido d’ape

Un gruppo di ricercatori delle università della Corea e del Nord Texas ha pensato di analizzare questa caratteristica delle strutture cellulari nella progettazione di profili alari trasformabili (morphing wing), Figura 2.

La ricerca in oggetto in particolare si pone l’obiettivo di realizzare un’ala trasformabile in modo completamente passivo, ovvero che modifichi la sua forma direttamente sotto gli effetti dovuti ai carichi aerodinamici, senza bisogno di altre fonti di energia.

Per questo scopo hanno realizzato alcuni modelli numerici complessi, che simulano l’interazione fluido-struttura e la accoppiano alla simulazione meccanica. In questo modo i carichi aerodinamici ricavati durante la simulazione fluidodinamica vengono applicati alla struttura; la simulazione strutturale ricava la nuova forma del profilo; la nuova forma viene di nuovo passata al solutore fluidodinamico per il calcolo delle nuove forze aerodinamiche (Figura 3).

I tre modelli di struttura analizzata tramite codici fluidodinamici accoppiati a solutori a elementi finiti tradizionali
I tre modelli di struttura analizzata tramite codici fluidodinamici accoppiati a solutori a elementi finiti tradizionali

La valutazione di tre diverse tipologie di strutture ha inoltre permesso di identificare le caratteristiche migliori di ciascuna cella fondamentale: le strutture dominate dalla flessione e le celle esagonali rientranti sono risultate mantenere una buona rigidezza accanto a buone caratteristiche di trasformabilità per la realizzazione di profili autoadattanti.

Additive manufacturing

L’Additive Manufacturing contro l’erosione nella pressofusione di alluminio

L’Additive Manufacturing (AM) metallico è stato accolto per la sua capacità di realizzare canali di raffreddamento ottimizzati. Tuttavia, la nuova frontiera non è (solo) raffreddare meglio, ma resistere di più. Si tratta di utilizzare la stampa 3D per creare inserti

Design thinking

Ferrari Hypersail: dalle hypercar alla vela

Un monoscafo foiling da 30 m progettato dal team del cavallino rampante, completamente auto‑alimentato da energie rinnovabili, che fonde tecnologie automotive e nautiche d’avanguardia Nel panorama attuale della vela oceanica, le barche da regata stanno attraversando un momento di profonda trasformazione.

le tolleranze di orientamento
Tips&Triks

Le tolleranze di orientamento

Le tolleranze di orientamento (parallelismo, perpendicolarità, inclinazione) controllano l’orientamento di un elemento rispetto ad uno o più riferimenti. Molti progettisti commettono l’errore di limitare un controllo di orientamento mediante le tolleranze dimensionali. Un controllo di parallelismo definisce lo scostamento dal