Ali a nido d’ape

Figura1
I profili più curvi hanno velocità di stallo più basse ma resistenza più elevata; alle velocità elevate i profili meno curvi sono più performanti

Le strutture a celle, come quelle delle strutture a nido d’ape (honeycomb), sono sempre più utilizzate nell’ingegneria, specialmente in quelle applicazioni che richiedono riduzioni di peso e rumore (ad esempio nei motori aeronautici o nei pannelli fonoassorbenti). Le celle, solitamente di forma esagonale, vengono progettate principalmente per fornire rigidezza. Tuttavia, utilizzando opportuni accorgimenti, le celle possono diventare utilizzabili come meccanismi, ovvero per fornire caratteristiche di elasticità e deformabilità.

Oggi, per garantire agli aeromobili buone caratteristiche di volo e di autonomia sia a bassa che alta velocità, i profili alari vengono già modificati anche in modo molto visibile da superfici mobili quali flap e slat (Figura 1).

L’interesse della ricerca in campo aeronautico si sta però spostando verso la realizzazione di profili modificabili con continuità e che richiedano quindi un numero inferiore di parti mobili e attuatori.

Figura2
Figura 2 – Morfologia di un’ala con struttura a nido d’ape

Un gruppo di ricercatori delle università della Corea e del Nord Texas ha pensato di analizzare questa caratteristica delle strutture cellulari nella progettazione di profili alari trasformabili (morphing wing), Figura 2.

La ricerca in oggetto in particolare si pone l’obiettivo di realizzare un’ala trasformabile in modo completamente passivo, ovvero che modifichi la sua forma direttamente sotto gli effetti dovuti ai carichi aerodinamici, senza bisogno di altre fonti di energia.

Per questo scopo hanno realizzato alcuni modelli numerici complessi, che simulano l’interazione fluido-struttura e la accoppiano alla simulazione meccanica. In questo modo i carichi aerodinamici ricavati durante la simulazione fluidodinamica vengono applicati alla struttura; la simulazione strutturale ricava la nuova forma del profilo; la nuova forma viene di nuovo passata al solutore fluidodinamico per il calcolo delle nuove forze aerodinamiche (Figura 3).

I tre modelli di struttura analizzata tramite codici fluidodinamici accoppiati a solutori a elementi finiti tradizionali
I tre modelli di struttura analizzata tramite codici fluidodinamici accoppiati a solutori a elementi finiti tradizionali

La valutazione di tre diverse tipologie di strutture ha inoltre permesso di identificare le caratteristiche migliori di ciascuna cella fondamentale: le strutture dominate dalla flessione e le celle esagonali rientranti sono risultate mantenere una buona rigidezza accanto a buone caratteristiche di trasformabilità per la realizzazione di profili autoadattanti.

Design thinking

Un tessuto vibrante alla ricerca del silenzio

Soppressione immediata dalle vibrazioni: un tessuto per impedire la trasmissione del suono. di Lisa Borreani Il suono, uno stimolatore sensoriale onnipresente, riveste una rilevanza significativa nella vita umana, poiché coinvolge continuamente le nostre facoltà uditive e mentali. L’importanza del suono

Additive manufacturing

Stampa 3D per lo stoccaggio dell’idrogeno

Rivoluzionare lo stoccaggio dell’idrogeno con la tecnologia SAFETEASY è la mission di 01GREEN. Grazie a un approccio ingegneristico avanzato, che combina la stampa 3D e la chimica dei materiali, l’azienda sta aprendo la strada a soluzioni scalabili ed efficienti per

Tips&Triks

Trucchi e segreti dei riferimenti (datum)

Tutte le novità della nuova norma ISO 5459:2024 sui riferimenti (datum). di Stefano Tornincasa Si è più volte ribadito nelle precedenti rubriche che il riferimento o datum sia un elemento geometrico astratto, ottenuto attraverso un procedimento matematico di associazione col